Honors Chemistry Reviews For District Assessments

1st Quarter Honors Chemistry Review

- 1. <u>Definitions</u>: Matter, elements, compounds, homogenous vs. heterogeneous, theory vs. hypothesis, temperature vs. heat, exothermic vs. endothermic.
- 2. Electron configurations of elements H→Cl.
- 3. Periodic trends including atomic radius, electronegativity, & ionization energy, group names & properties. Groups vs. Periods.
- 4. Density equation.
- 5. Properties of solids, liquids, & gases.
- Temperature conversions→absolute zero emphasized.
- 7. Structure of atom (p+, n, e-) including position, charges, masses→Know by looking at the PT # of protons, neutrons, & electrons an element has.
 - Know why nucleus has net positive charge.
- 8. Know ions & isotopes & how to tell if an atom is an isotope.
- 9. Lewis Dot Structures
- 10. Nonmetals vs. metals
- 11. Nuclear Chemistry→alpha particles.
- 12. Moles, molar mass conversions (grams to moles to atoms/molecules).
- 13. Metals, nonmetals, & metalloids→know how to visually identify from PT.
- 14. Know contributions of the following scientists: Milliken, Thomson, Rutherford, Einstein, Bohr
- 15. Energy in the form of light is related to position of electrons in their energy levels

1st Semester Final Review—Honors Chemistry

- 1. <u>Definitions</u>: Matter, elements, compounds, homogenous vs. heterogeneous, theory vs. hypothesis, temperature vs. heat, exothermic vs. endothermic, chemical vs. physical changes, atomic number vs. atomic mass, Law of Mass Conservation
- 2. Electron configurations of elements H→Cl.
- Periodic trends including atomic radius, electronegativity, & ionization energy, group names & properties. Groups vs. Periods.
- Density equation.
- 5. Properties of solids, liquids, & gases.
- 6. Temperature conversions→absolute zero emphasized.
- 7. Structure of atom (p+, n, e-) including position, charges, masses \rightarrow Know by looking at the PT # of protons, neutrons, & electrons an element has.
 - Know why nucleus has net positive charge & nucleus has most mass vs. entire atomic volume.
- 8. Know ions & isotopes & how to tell if an atom is an isotope.
- 9. Lewis Dot Structures
- 10. Nonmetals vs. metals
- 11. Nuclear Chemistry→alpha particles.
- 12. Moles, molar mass conversions (grams to moles to atoms/molecules).
- 13. Metals, nonmetals, & metalloids→know how to visually identify from PT.
- 14. Types of bonding→ionic, covalent, metallic, hydrogen, & properties of each.
- 15. Anions vs. cations.
- 16. Standard Temperature & Pressure (STP)→understand that 1 atm can be 760 torr or 760 mm Hg.

- 17. Dalton's Law of Partial Pressure
- 18. Graham's Law
- 19. Ideal Gas Law
- 20. Kinetic Theory of Gases
- 21. Absolute zero is NOT standard temperature? Go over the differences!
- 22.Balancing equations, coefficients, mole ratios & converting from grams to moles & back from moles to grams again.
- 23.% Composition & % Yield
- 24. Naming covalent molecules & binary ionic compounds.
- 25. Know most used polyatomic ions.
- 26. Types of reactions (synthesis, s. replacement, d. replacement & decomp.)
- 27.Reactants vs. products.
- 28. Biological molecules -> types of bonding within biological polymers.
- 29. Scientific contributions: Milliken, Thomson, Rutherford, Bohr

3rd Quarter Honors Chemistry Review

- 1. <u>Definitions</u>: elements vs. compounds, specific heat capacity, chemical vs. physical, ions vs. atoms, exothermic vs. endothermic, pressure, diffusion, joule, monatomic vs. diatomic, periodic trends.
- 2. Ionic vs. metallic, vs. covalent bonding.
- 3. Properties of ionic substances vs. covalent.
- 4. Lewis Dots
- 5. Hydrogen Bonding -> How it affects water vs. other covalently bonded molecules.
- Calculate molar masses of molecules/compounds→adding it up.
- 7. 4 Types of Reactions.
- 8. Balancing Equations.
- 9. Stoichiometry→mole to mole, mole to gram, gram to mole, gram to gram....
- 10. Calculations→ppm, g/L, molarity, specific heat, heat of fusion/vaporization.
- 11. Phases of matter-phase diagram interpretation, identify solids, liquids, gases.
- 12. Closed vs. Open systems & equilibrium (how temp, pressure & concentrations affect equilibrium shifts).
- 13. Kinetic Molecular Theory of gases vs. liquids & how pressure plays a role in KMT of gases.
- 14. Gas Laws -> Combined only no PV=nRT (no standards for Ideal).
- 15. Catalysts & how it affects reactions.
- 16. van der Waals forces
- 17. Gibb's Free Energy / Enthalpy calculations
- 18. Colligative properties
- 19. separation of mixtures using chromatography & distillation
- 20. Acid Base Definitions & pH calculations using concentration

- 21. Buffers
- 22. Role of Activation Energy

Chemistry Honors 2nd Semester Final Review

- 1. <u>Definitions</u>: elements vs. compounds, specific heat capacity, chemical vs. physical, ions vs. atoms, exothermic vs. endothermic, pressure, diffusion, joule, monatomic vs. diatomic.
- 2. Ionic vs. metallic, vs. covalent bonding.
- 3. Properties of ionic substances vs. covalent.
- 4. Lewis Dots
- 5. Hydrogen Bonding -> How it affects water vs. other covalently bonded molecules.
- 6. Calculate molar masses & number of atoms in molecules/compounds→adding it up.
- 7. 4 Types of Reactions.
- 8. Balancing Equations.
- 9. Stoichiometry->mole to mole, mole to gram, gram to mole, gram to gram....
- 10. Calculations → ppm, g/L, molarity, specific heat, heat of fusion/vaporization.
- 11. Phases of matter->phase diagram interpretation, identify solids, liquids, gases.
- 12. Closed vs. Open systems & equilibrium (how temp, pressure & concentrations affect equilibrium shifts).
- 13. Kinetic Molecular Theory of gases vs. liquids & how pressure plays a role in KMT of gases.
- 14. Gas Laws→Combined only no PV=nRT (no standards for Ideal).
- 15. Catalysts & how it affects reactions (know visually).
- 16. Biological Polymers vs. monomers-proteins & carbs & type of bonding within them.
- 17. Acids/Bases-Properties of both including strong vs. weak, electrolyte vs. non, pH scale, hydronium ions.
- 18. Reaction Rates as a function of particle collisions, visually understand endo vs. exothermic reactions, increased reactants, temp & pressure (how they affect overall reaction rate).
- 20. 19. Nuclear Chemistry > types/penetration & properties of radiation (alpha, beta, gamma), fission vs. fusion, Einstein's equation of energy & mass, isotopes; Calculate half lives
- 21. Organic Chemistry types of bonds within organic molecules, alkanes, visual naming, 4 basic organic molecules (proteins, carbs, nucleic acids, lipids), polymers vs. monomers.
- 22. Writing & calculating equilibrium constants.
- 23. Identify and balance redox reactions.
- 24. Naming & identifying organic molecules including benzene; functional groups; R-group structure of amino acids; polymerization reactions